- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Adcroft, Alistair (2)
-
Beadling, Rebecca L (2)
-
Bushuk, Mitchell (2)
-
Chang, Chiung‐Yin (2)
-
Drake, Henri F (2)
-
Dussin, Raphael (2)
-
Griffies, Stephen M (2)
-
Hallberg, Robert W (2)
-
Hurlin, William J (2)
-
Khatri, Hemant (2)
-
Krasting, John P (2)
-
Lobo, Matthew (2)
-
MacGilchrist, Graeme A (2)
-
Reichl, Brandon G (2)
-
Sane, Aakash (2)
-
Sergienko, Olga (2)
-
Sonnewald, Maike (2)
-
Steinberg, Jacob M (2)
-
Tesdal, Jan‐Erik (2)
-
Thomas, Matthew (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper is Part II of a two‐part paper that documents the Climate Model version 4X (CM4X) hierarchy of coupled climate models developed at the Geophysical Fluid Dynamics Laboratory. Part I of this paper is presented in Griffies et al. (2025a,https://doi.org/10.1029/2024MS004861). Here we present a suite of case studies that examine ocean and sea ice features that are targeted for further research, which include sea level, eastern boundary upwelling, Arctic and Southern Ocean sea ice, Southern Ocean circulation, and North Atlantic circulation. The case studies are based on experiments that follow the protocol of version 6 from the Coupled Model Intercomparison Project. The analysis reveals a systematic improvement in the simulation fidelity of CM4X relative to its CM4.0 predecessor, as well as an improvement when refining the ocean/sea ice horizontal grid spacing from the of CM4X‐p25 to the of CM4X‐p125. Even so, there remain many outstanding biases, thus pointing to the need for further grid refinements, enhancements to numerical methods, and/or advances in parameterizations, each of which target long‐standing model biases and limitations.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Griffies, Stephen M; Adcroft, Alistair; Beadling, Rebecca L; Bushuk, Mitchell; Chang, Chiung‐Yin; Drake, Henri F; Dussin, Raphael; Hallberg, Robert W; Hurlin, William J; Khatri, Hemant; et al (, Journal of Advances in Modeling Earth Systems)Abstract We present the GFDL‐CM4X (Geophysical Fluid Dynamics Laboratory Climate Model version 4X) coupled climate model hierarchy. The primary application for CM4X is to investigate ocean and sea ice physics as part of a realistic coupled Earth climate model. CM4X utilizes an updated MOM6 (Modular Ocean Model version 6) ocean physics package relative to CM4.0, and there are two members of the hierarchy: one that uses a horizontal grid spacing of (referred to as CM4X‐p25) and the other that uses a grid (CM4X‐p125). CM4X also refines its atmospheric grid from the nominally 100 km (cubed sphere C96) of CM4.0–50 km (C192). Finally, CM4X simplifies the land model to allow for a more focused study of the role of ocean changes to global mean climate. CM4X‐p125 reaches a global ocean area mean heat flux imbalance of within years in a pre‐industrial simulation, and retains that thermally equilibrated state over the subsequent centuries. This 1850 thermal equilibrium is characterized by roughly less ocean heat than present‐day, which corresponds to estimates for anthropogenic ocean heat uptake between 1870 and present‐day. CM4X‐p25 approaches its thermal equilibrium only after more than 1000 years, at which time its ocean has roughlymoreheat than its early 21st century ocean initial state. Furthermore, the root‐mean‐square sea surface temperature bias for historical simulations is roughly 20% smaller in CM4X‐p125 relative to CM4X‐p25 (and CM4.0). We offer themesoscale dominance hypothesisfor why CM4X‐p125 shows such favorable thermal equilibration properties.more » « lessFree, publicly-accessible full text available October 1, 2026
An official website of the United States government
